当前位置:新励学网 > 秒知问答 > 叙述单纯形法的基本思想

叙述单纯形法的基本思想

发表时间:2024-07-12 13:51:54 来源:网友投稿

单纯形法的基本想法是从线性规划可行集的某一个顶点出发,沿着使目标函数值下降的方向寻求下一个顶点,面顶点个数是有限的,所以只要这个线性规划有最优解,那么通过有限步迭代后,必可求出最优解。

为了用迭代法求出线性规划的最优解,需要解决以下三个问题:(1)最优解判别准则,即迭代终止的判别标准;(2)换基运算,即从一个基可行解迭代出另一个基可行解的方法;(3)进基列的选择,即选择合适的列以进行换基运算,可以使目标函数值有较大下降。

它的理论根据是:线性规划问题的可行域是n维向量空间Rn中的多面凸集,其最优值如果存在必在该凸集的某顶点处达到。顶点所对应的可行解称为基本可行解。单纯形法的基本思想是:先找出一个基本可行解,对它进行鉴别,看是否是最优解;若不是,则按照一定法则转换到另一改进的基本可行解,再鉴别;若仍不是,则再转换,按此重复进行。因基本可行解的个数有限,故经有限次转换必能得出问题的最优解。如果问题无最优解也可用此法判别。

根据单纯形法的原理,在线性规划问题中,决策变量(控制变量)x1,x2,…xn的值称为一个解,满足所有的约束条件的解称为可行解。使目标函数达到最大值(或最小值)的可行解称为最优解。这样一个最优解能在整个由约束条件所确定的可行区域内使目标函数达到最大值(或最小值)。求解线性规划问题的目的就是要找出最优解。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!