当前位置:新励学网 > 秒知问答 > 高等数学极值问题

高等数学极值问题

发表时间:2024-07-12 15:03:09 来源:网友投稿

假设f(x)和g(x)在x=a处连续且二阶可导,则有

f'(a)=g'(a)=0,f''(a)<0,g''(a)<0

F'(x)=[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x)

故F'(a)=f'(a)g(a)+f(a)g'(a)=0

所以F(x)在x=a处取得极值,C选项错误。

F''(x)=[f'(x)g(x)+f(x)g'(x)]'=f''(x)g(x)+f(x)g''(x)+2f'(x)g'(x)

故F''(a)=f''(a)g(a)+f(a)g''(a)+2f'(a)g'(a)=f''(a)g(a)+f(a)g''(a)

只知道f''(a)<0,g''(a)<0,而g(a)和f(a)的符号不能确定,所以F''(a)的符号不能确定。所以即使知道f(x)和g(x)在x=a处二阶可导,且二阶导数小于零,也只能确定F(x)取得极值,但无法确定是极大值还是极小值,选D正确。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!