戴德金分割
两段材料你看下行不.
在解析函数中,对实数定义大意是,先从自然数出发定义正有理数,然后通过无穷多个有理数的集合来定义实数;现在通常所采用的是戴德金和康托的构造方法。戴德金方法称为戴德金分割,是将有理数的集合分成两个非空不相交的子集A与B,使得A中的每一个元素小于B中的每一个元素。戴德金把这种划分定义为有理数的一个分割,记为(A,B)。因为不存在有理数X使得X的平方等于2,戴德金说,考虑一个不是由有理数产生的分割(A,B)时,就得到一个新数,即无理数a,这个数是由分割(A,B)完全确定的。因此戴德金就把一切实数组成的集合R定义为有理数集的一切分割,而一个实数a就是一个分割(A,B)。在这一定义中,由一个给定的有理数r产生的两个实质上等价的分割被看成是同一的。
戴德金的方法也称为戴德金分割,是将一切有理数的集合划分为两个非空不相交的子集和,使得中的每一个元素小于中的每一个元素,这时戴德金把这个划分定义为有理数的一个分割,记为.有些分割是有理数产生的,在这样的分割中,要么有最大元素,要么有最小元素.但有些分割却不是,例如,若是由满足的一切正有理数组成,是由一切其余的有理数组成,则既不存在的最大元素,也不存在的最小元素,因为不存在有理数使得.戴德金说;每当我们考虑一个不是由有理数产生的分割时,就得到一个新数即无理数,我们认为这个数是由分割完全确定的.因此戴德金就把一切实数组成的集合定义为有理数集的一切分割,而一个实数就是一个分割.
在这一定义中,由一个给定的有理数产生的两个实质上等价的分割(视是的最大元素还是的最小元素而定)被看成是同一的.
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇