当前位置:新励学网 > 秒知问答 > 证明一个数列存在极限有几种方法

证明一个数列存在极限有几种方法

发表时间:2024-07-13 22:02:14 来源:网友投稿

(1)通项公式法:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示。有些数列的通项公式可以有不同形式,即不唯一;有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。

an=a1+(n-1)d

其中n=1时a1=S1;n≥2时an=Sn-Sn-1。

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b。

(2)递推公式法:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,有些数列的递推公式可以有不同形式,即不唯一。有些数列没有递推公式,即有递推公式不一定有通项公式。

扩展资料性质:

(1)任意两项am,an的关系为:an=am+(n-m)d,它可以看作等差数列广义的通项公式。

(2)从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=?=ak+an-k+1,k∈N*。

(3)若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq。

(4)对任意的k∈N*,有Sk,S2k-Sk,S3k-S2k,?,Snk-S(n-1)k?成等差数列。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!