当前位置:新励学网 > 秒知问答 > 函数的同增异减是怎样证明的

函数的同增异减是怎样证明的

发表时间:2024-07-13 22:49:28 来源:网友投稿

是指复合函数的单调性判断法则,函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y。

则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

扩展资料函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。

另外把函数的表达式(无表达式的函数除外)中的“=”换成“”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!