初一数学100道选择题填空题附答案
是一共100道?
一、选择题:(每小题3分,共21分)
题号1234567
答案
每题给出4个答案,其中只有一个是正确的,请把选出的答案编号填在上面的答题表中,否则不给分.
1、已知方程3x+a=2的解是5,则a的值是
A、—13B、—17C、13D、17
2、已知等腰三角形的周长是63cm,以一腰为边作等边三角形,其周长为69cm,那么等腰三角形的底边长是
A、23cmB、17cmC、21cmD、6cm
3、在2004年印度洋海啸中,小红打开自己的储蓄盒,把积赞的零花钱拿出来数了数,发现1元、2元的共有15张,共20元钱,那么小红1元、2元的各有
A、5张、10张B、10张、5张C、8张、7张D、7张、8张
4、下列图形中,有无数条对称轴的是
A、等边三角形B、平行四边形C、等腰梯形D、圆
5、对于数据2,2,3,2,5,2,10,2,5,2,3,下列说法正确的有
①众数是2;
②众数与中位数的数值不相等;
③中位数与平均数的数值相等;
④平均数与众数的数值相等。
A、1个B、2个C、3个D、4个
6、下列四种正多边形中,用同一种图形不能铺满平面的是
A、正三角形B、正方形C、正五边形D、正六边形
7、某药店在“非典”期间,市场上抗病毒药品紧缺的情况下,将某药品提价100%,物价部门查处后,限定其提价幅度只能是原价的10%,则该药品现在降价的幅度是
A、45%B、50%C、90%D、95%
二、填空题:(每小题4分,共32分,请将答案填入答题表中)
题号891011
答案
题号12131415
答案
8、方程组的解是。
9、等腰直角三角形ABC中,∠A=90o,BC=6cm,BD平分∠ABC交AC天D,DE⊥BC于E,则△CDE的周长为___。
10、若多边形内角和为1080o,则这个多边形是边形。
11、一艘船顺流航行的速度是每小时20千米,逆流航行的速度是每小时12千米,则船在静水中的速度为,水流速度为。
12、在一次篮球比赛中,某主力队员在一次比赛中投22球,14中,得28分,除了3分球全中外,他还投中了个两分和个罚球。
13、已知2x—y=3,那么1—4x+2y=。
14、如图1所示,已知∠1=80o,∠F=15o,∠B=35o,
那么∠A=,∠DEA=。
(图1)
15、由多边形一个顶点所引的对角线将这个多边形分成了10个三角形,则这个多边形的内角和为。
参考答案
一、选择题
1、A2、B3、B4、D5、A6、C7、A
二、填空题:(共10小题,每题2分,共20分,请将答案填入答题表中)
8、x=3,y=-1;9、6cm;10、八;11、16千米/小时候4千米/小时;12、813、-5;14、45º85
1.当x=时,方程x+1=2成立.
2.方程-3x=3-4x的解是。
3.当x=时,y1=x+3与y2=2-x相等。
4.x的3倍与2的差等于4,x=。
5.一本书周长为68cm,长比宽多6cm。设这本书宽为xcm,长为cm,则可通过解方程,求出宽x=cm,长等于cm。
6.棱锥的侧面是形。
7.如图将正方体切去一块,所得图形有个面。
8.如图由A图经过得到B图。
9.将两块相同的直角三角板(300)相等的边拼在一起,能拼成种平面图形。
二、选择题(每题3分,计24分)
10。下列各数中是方程2x-1=5解的是()
A.2B.3C.4D.5
11.如果x=-2是方程a(x+3)=a+x的解,那么a2-+1=()
A.17B.18C.19D.20
12.已知A=2,B=x+1,若A•B=则x=()
A.2B.1C.0D.-1
13.3x+与3(x-)互为相反数,则x=()
A.-B.-C.-D.-
14.下列图形中的某一图形绕L旋转一周后成为圆台的是()
15.将左图绕O点按顺时针方向旋转900后,得到的图形是()
16.空心圆柱从三个方向看正确的图形是(看不见的部分用虚线表示)()
17、下列图形不能折成正方体的是()
附参考答案:
1.22.33.-4.25.x+6,2[x+(x+6)]=68,x=14,206.三角形,7.7,
8.翻折,9.6,10.B,11.C,12.D,13D,14.C,15.B,16.A,17.A,
º;15、1800º;
选择题
1.已知(x+y)∶(x-y)=3∶1,则x∶y=()。
A、3∶1B、2∶1C、1∶1D、1∶2
2.方程-2x+m=-3的解是3,则m的值为()。
A、6B、-6C、D、-18
3.在方程6x+1=1,2x=,7x-1=x-1,5x=2-x中解为的方程个数是()。
A、1个B、2个C、3个D、4个
4.根据“a的3倍与-4绝对值的差等于9”的数量关系可得方程()。
A、|3a-(-4)|=9B、|3a-4|=9
C、3|a|-|-4|=9D、3a-|-4|=9
5.若关于x的方程=4(x-1)的解为x=3,则a的值为()。
A、2B、22C、10D、-2
答案与解析
答案:1、B2、A3、B4、D5、C
解析:
1.分析:本题考查对等式进行恒等变形。
由(x+y)∶(x-y)=3∶1,知x+y=3(x-y),化简得:x+y=3x-3y,
得2x-4y=0,即x=2y,x∶y=2∶1。
2.分析:∵3是方程-2x+m=-3的解,
∴-2×3+m=-3,
即-6+m=-3,
∴m=-3+6,——根据等式的基本性质1
∴m=6,——根据等式的基本性质2
∴选A。
3.分析:6x+1=1的解是0,2x=的解是,7x-1=x-1的解是0,5x=2-x的解是。
4.略。
5.分析:因为x=3是方程=4(x-1)的解,故将x=3代入方程满足等式。
一、多变量型
多变量型一元一次方程解应用题是指在题目往往有多个未知量,多个相等关系的应用题。这些未知量只要设其中一个为x,其他未知量就可以根据题目中的相等关系用含有x的代数式来表示,再根据另一个相等关系列出一个一元一次方程即可。
例一:(2005年北京市人教)夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。求只将温度调高1℃后两种空调每天各节电多少度?
分析:本题有四个未知量:调高温度后甲空调节电量、调高温度后乙空调节电量、清洗设备后甲空调节电量、清洗设备后乙空调节电量。相等关系有调高温度后甲空调节电量-调高温度后乙空调节电量=27、清洗设备后乙空调节电量=1.1×调高温度后乙空调节电量、调高温度后甲空调节电量=清洗设备后甲空调节电量、清洗设备后甲空调节电量+清洗设备后乙空调节电量=405。根据前三个相等关系用一个未知数设出表示出四个未知量,然后根据最后一个相等关系列出方程即可。
解:设只将温度调高1℃后,乙种空调每天节电x度,则甲种空调每天节电度。依题意得:
解得:
答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。
二、分段型
分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。
例二:(2005年东营市)某水果批发市场香蕉的价格如下表:
购买香蕉数
(千克)不超过
20千克20千克以上
但不超过40千克40千克以上
每千克价格6元5元4元
张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?
分析:由于张强两次共购买香蕉50千克(第二次多于第一次),那么第二次购买香蕉多于25千克,第一次少于25千克。由于50千克香蕉共付264元,其平均价格为5.28元,所以必然第一次购买香蕉的价格为6元/千克,即少于20千克,第二次购买的香蕉价格可能5元,也可能4元。我们再分两种情况讨论即可。
解:
1)当第一次购买香蕉少于20千克,第二次香蕉20千克以上但不超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:
6x+5(50-x)=264
解得:x=14
50-14=36(千克)
2)当第一次购买香蕉少于20千克,第二次香蕉超过40千克的时候,设第一次购买x千克香蕉,第二次购买(50-x)千克香蕉,根据题意,得:
6x+4(50-x)=264
解得:x=32(不符合题意)
答:第一次购买14千克香蕉,第二次购买36千克香蕉
例三:(2005年湖北省荆门市)参加保险公司的医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表.某人住院治疗后得到保险公司报销金额是1100元,那么此人住院的医疗费是()
住院医疗费(元)报销率(%)
不超过500元的部分0
超过500~1000元的部分60
超过1000~3000元的部分80
……
A、1000元B、1250元C、1500元D、2000元
解:设此人住院费用为x元,根据题意得:
500×60%+(x-1000)80%=1100
解得:x=2000
所以本题答案D。
三、方案型
方案型一元一次方程解应用题往往给出两个方案计算同一个未知量,然后用等号将表示两个方案的代数式连结起来组成一个一元一次方程。
例四:(2005年泉州市)某校初三年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15人无座位。
(1)设原计划租用30座客车x辆,试用含x的代数式表示该校初三年级学生的总人数;
(2)现决定租用40座客车,则可比原计划租30座客车少一辆,且所租40座客车中有一辆没有坐满,只坐35人。请你求出该校初三年级学生的总人数。
分析:本题表示初三年级总人数有两种方案,用30座客车的辆数表示总人数:30x+15
用40座客车的辆数表示总人数:40(x-2)+35。
解:(1)该校初三年级学生的总人数为:30x+15
(2)由题意得:
30x+15=40(x-2)+35
解得:x=6
30x+15=30×6+15=195(人)
答:初三年级总共195人。
四、数据处理型
数据处理型一元一次方程解应用题往往不直接告诉我们一些条件,需要我们对所给的数据进行分析,获取我们所需的数据。
例五:(2004年北京海淀区)解应用题:2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:
行驶区间车次起始时刻到站时刻历时全程里程
A地—B地K1202:006:004小时264千米
请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.
行驶区间车次起始时刻到站时刻历时全程里程
A地—B地K1202:00264千米
解:
行驶区间车次起始时刻到站时刻历时全程里程
A地—B地K1202:004:242.4小时264千米
分析:通过表一我们可以得知提速前的火车速度为264÷4=66千米/时,从而得出提速后的速度,再根据表二已经给的数据,算出要求的值。
解:设列车提速后行驶时间为x小时.根据题意,得
经检验x=2.4符合题意.
答:到站时刻为4:24,历时2.4小时
例六:(2005浙江省)据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:
车站名ABCDEFGH
各站至H站的里程数(单位:千米)15001130910622402219720
例如要确定从B站至E站火车票价,其票价为(元).
(1)求A站至F站的火车票价(结果精确到1元);
(2)旅客王大妈乘火车去女儿家,上车过两站后拿着火车票问乘务员:我快到站了吗?乘务员看到王大妈手中票价是66元,马上说下一站就到了.请问王大妈是在哪一站下车的?(要求写出解答过程).
解:(1)解法一:由已知可得.
A站至F站实际里程数为1500-219=1281.
所以A站至F站的火车票价为0.121281=153.72154(元)
解法二:由已知可得A站至F站的火车票价为(元).
(2)设王大妈实际乘车里程数为x千米,根据题意,得:.
解得x=(千米).
对照表格可知,D站与G站距离为550千米,所以王大妈是D站或G站下的车.
代数第六章能力自测题
一元一次不等式和一元一次不等式组
初中数学网站http://emath.126.com
分式方程
(一)填空
关于y的方程是_____.
(二)选择
A.x=-3;B.x≠-3;
C.一切实数;D.无解.
C.无解;D.一切实数.
A.x=0;B.x=0,x=1;
C.x=0,x=-1;D.代数式的值不可能为零.
A.a=5;B.a=10;
C.a=10;D.a=15.
A.a=-2;B.a=2;
C.a=1;D.a=-1.
A.一切实数;B.x≠7的一切实数;
C.无解;D.x≠-1,7的一切实数.
A.a=2;B.a只为4;
C.a=4或0;D.以上答案都不对.
A.a>0;B.a>0且a≠1;
C.a>0且a≠0;D.a<0.
A.a<0;B.a<0或a=1;
C.a<0或a=2;D.a>0.
(三)解方程
51.甲、乙两人同时从A地出发,步行30千米到B地甲比乙每小时多走1千米,结果甲比乙早到1小时,两人每小时各走多少千米?
http://219.226.9.43/Resource/CZ/CZSX/DGJC/CSSX/D2/math0003ZW1_0019.htm
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇