当前位置:新励学网 > 秒知问答 > 矩阵相似对角化为什么r(λE-A)=1

矩阵相似对角化为什么r(λE-A)=1

发表时间:2024-07-15 03:22:57 来源:网友投稿

定理:n阶矩阵A相似于对角阵的充分必要条件是对于k重特征根λ有r(λE-A)=n-k。本题n=3,k=2,所以r(-E-A)=3-2=1。

如果r(λE-A)=1

那么λ对应的特征向量有3-1=2个

而另一个特征值

当然对应1个特征向量

于是有三个特征向量

所以A相似于对角矩阵

若n阶矩阵A有n个不同的特征值,则A必能相似于对角矩阵。

说明:当A的特征方程有重根时,就不一定有n个线性无关的特征向量,从而未必能对角化。

设M为元素取自交换体K中的n阶方阵,将M对角化,就是确定一个对角矩阵D及一个可逆方阵P,使M=PDP-1。设f为典范对应于M的Kn的自同态,将M对角化,就是确定Kn的一个基,使在该基中对应f的矩阵。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!