当前位置:新励学网 > 秒知问答 > 实变函数与泛函分析

实变函数与泛函分析

发表时间:2024-07-15 16:45:54 来源:网友投稿

以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。所谓点集论就是专门研究点所成的集合的性质的理论,也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。

泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。

泛函分析研究的什么?

  学习泛函,首先要问泛函研究的是什么?  

1.映射指的是算子和泛函。  

2.空间:  X是定义在某数域上的“一些对象”的集合,若X是线性空间,在X上赋上距离,则就是赋距离线性空间;在X上赋上范数,则就是赋范数线性空间;在X上赋上内积,就是内积空间(也是赋范数线性空间)。  

控制方向的学生可参考教材:《应用泛函分析---自动控制的数学基础》清华大学出版社作者:韩崇昭(西安交通大学)此书可供研究生和博士生阅读。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!