当前位置:新励学网 > 秒知问答 > 数学未解题目

数学未解题目

发表时间:2024-07-17 00:07:08 来源:网友投稿

世界近代三大数学难题之一四色猜想

四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。

1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。

11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久泰勒的证明也被人们否定了。后来越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是人们开始认识到,这个貌似容易的题目,实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。

进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。

--------

世界近代三大数学难题之一费马最后定理

被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有

关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『

我找到了』」。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的

男人照片。这个古意盎然的男人,就是法国的数学家费马(PierredeFermat)(费马

小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极

大的贡献因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子

」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的

数学书时突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内

容是有关一个方程式x2+y2=z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定

理(中国古代又称勾股弦定理):x2+y2=z2,此处z表一直角形之斜边而x、y为其之

两股也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有

整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13…

等等。

费马声称当n>2时,就找不到满足xn+yn=zn的整数解,例如:方程式x3+y3=z3就无法

找到整数解。

当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙

法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百

多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最

后定理也就成了数学界的心头大患,极欲解之而后快。

十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和

三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫

斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人,

有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然

如此仍然吸引不少的「数学痴」。

二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的

,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确

的(注286243-1为一天文数字,大约为25960位数)。

虽然如此数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解

决了这个数学难题是由英国的数学家威利斯(AndrewWiles)所解决。其实威利斯是

利用二十世纪过去三十年来抽象数学发展的结果加以证明。

五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志

村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德

国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联

论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论

由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报

告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的

证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以

修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6

月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金

,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。

要证明费马最后定理是正确的

(即xn+yn=zn对n33均无正整数解)

只需证x4+y4=z4和xp+yp=zp(P为奇质数),都没有整数解。

----------------

世界近代三大数学难题之一哥德巴赫猜想

哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,但是不能作出证明。欧拉一直到死也没有对此作出证明。从此这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。

一:P(多项式算法)问题对NP(非多项式算法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟你就能向那里扫视,并且发现你的主人是正确的。但是如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。

二:霍奇(Hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

三:庞加莱(Poincare)猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

四:黎曼(Riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;但是德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

五:杨-米尔斯(Yang-Mills)存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。

七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想

数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

八:几何尺规作图问题

这里所说的“几何尺规作图问题”是指作图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题1.化圆为方-求作一正方形使其面积等於一已知圆;2.三等分任意角;3.倍立方-求作一立方体使其体积是一已知立方体的二倍。4.做正十七边形。以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

九:哥德巴赫猜想

公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:(a)任何一个>=6之偶数,都可以表示成两个奇质数之和。(b)任何一个>=9之奇数,都可以表示成三个奇质数之和。从此这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

【哥德巴赫猜想最新最好的成果是中国数学家陈景润的陈氏定理,通俗地讲:哥德巴赫猜想如果简称“1+1”,如今解决的是“1+2”。但是这样说使得许多大众容易产生误会。】

十:四色猜想

1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。

希尔伯特23问题里尚未解决的问题:

1、问题1连续统假设。

全体正整数(被称为可数集)的基数和实数集合(被称为连续统)的基数c之间没有其它基数。

背景:1938年奥地利数学家哥德尔证明此假设在集合论公理系统,即策莫罗-佛朗克尔公理系统里,不可证伪。

1963年美国数学家柯恩证明在该公理系统,不能证明此假设是对的。

所以至今未有人知道,此假设到底是对还是错。

2、问题2算术公理相容性。

背景:哥德尔证明了算术系统的不完备,使希尔伯特的用元数学证明算术公理系统的无矛盾性的想法破灭。

3、问题7某些数的无理性和超越性。

背景

此题为希尔伯特第7问题中的一个特例。

已经证明了e^π的超越性,却至今未有人证明e+π的超越性。

4、问题8素数问题。

证明:

ζ(s)=1+(1/2)^s+(1/3)^s+(1/4)^s+(1/5)^s+…

(s属于复数域)

所定义的函数ζ(s)的零点,除负整实数外,全都具有实部1/2。

背景:

此即黎曼猜想。也就是希尔伯特第8问题。

美国数学家用计算机算了ζ(s)函数前300万个零点确实符合猜想。

希尔伯特认为黎曼猜想的解决能够使我们严格地去解决歌德巴赫猜想(任一偶数可以分解为两素数之和)和孪生素数猜想(存在无穷多相差为2的素数)。

引申的问题是:素数的表达公式?素数的本质是什么?

5、问题11系数为任意代数数的二次型。

背景:德国和法国数学家在60年代曾取得重大进展。

6、问题12阿贝尔域上的克罗内克定理在任意代数有理域上的推广。

背景:此问题只有些零散的结果,离彻底解决还十分遥远。

7、问题13仅用二元函数解一般7次代数方程的不可能性。

背景:1957苏联数学家解决了连续函数情形。如要求是解析函数则此问题尚未完全解决。

8、问题15舒伯特计数演算的严格基础。

背景:代数簌交点的个数问题。和代数几何学有关。

9、问题16代数曲线和曲面的拓扑。

要求代数曲线含有闭的分枝曲线的最大数目。和微分方程的极限环的最多个数和相对位置。

10、问题18用全等多面体来构造空间。

无限个相等的给定形式的多面体最紧密的排列问题,现在仍未解决。

11、问题20一般边值问题。

偏微分方程的边值问题,正在蓬勃发展。

12、问题23变分法的进一步发展。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!