当前位置:新励学网 > 秒知问答 > 捆绑法的例题详解

捆绑法的例题详解

发表时间:2024-07-17 00:58:11 来源:网友投稿

有8本不同的书;其中数学书3本,外语书2本,其它学科书3本.若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有()种.(结果用数值表示)解:把3本数学书“捆绑”在一起看成一个整体,2本外语书也“捆绑”在一起看成一个整体,与其它3本书一起看作5个元素,共有A(5,5)种排法;又3本数学书有A(3,3)种排法,2本外语书有A(2,2)种排法;根据分步计数原理共有排法A(5,5)A(3,3)A(2,2)=1440(种).例题:6个球放进5个盒子,有多少种不同的方法?其实,由抽屉原理可知,必然有两个球在一起。所以答案是C(6,2)XA(5,5)其实就是6取2,与5的阶乘的积例题2:五年级三班举行六一儿童节联欢活动.整个活动由2个舞蹈、2个演唱和3个小品组成.请问:如果要求同类型的节目连续演出,那么共有多少种不同的出场顺序?解答:要求同类型的节目连续演出,则可以应用“捆绑法”.先对舞蹈、演唱、小品三种节目做全排列,再分别在各类节目内部排列具体节目的次序.因此出场顺序总数为:A(33)×A(22)×A(22)×A(33)(种)

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!