当前位置:新励学网 > 秒知问答 > 数学题,百度上帮我找下答案

数学题,百度上帮我找下答案

发表时间:2024-07-17 01:17:08 来源:网友投稿

(1)根据同角的余角相等得出∠CAD=∠B,根据AC:AB=1:2及点E为AB的中点,得出AC=BE,再利用AAS证明△ACD≌△BEF,即可得出EF=CD;

(2)作EH⊥AD于H,EQ⊥BC于Q,先证明四边形EQDH是矩形,得出∠QEH=90°,则∠FEQ=∠GEH,再由两角对应相等的两三角形相似证明△EFQ∽△EGH,得出EF:EG=EQ:EH,然后在△BEQ中,根据正弦函数的定义得出EQ=BE,在△AEH中,根据余弦函数的定义得出EH=AE,又BE=AE,进而求出EF:EG的值.

解答:

(1)证明:如图1,

在△ABC中,∵∠CAB=90°,AD⊥BC于点D,

∴∠CAD=∠B=90°﹣∠ACB.

∵AC:AB=1:2,∴AB=2AC,

∵点E为AB的中点,∴AB=2BE,

∴AC=BE.

在△ACD与△BEF中,

∴△ACD≌△BEF,

∴CD=EF,即EF=CD;

(2)解:如图2,作EH⊥AD于H,EQ⊥BC于Q,

∵EH⊥AD,EQ⊥BC,AD⊥BC,

∴四边形EQDH是矩形,

∴∠QEH=90°,

∴∠FEQ=∠GEH=90°﹣∠QEG,

又∵∠EQF=∠EHG=90°,

∴△EFQ∽△EGH,

∴EF:EG=EQ:EH.

∵AC:AB=1:,∠CAB=90°,

∴∠B=30°.

在△BEQ中,∵∠BQE=90°,

∴sin∠B==,

∴EQ=BE.

在△AEH中,∵∠AHE=90°,∠AEH=∠B=30°,

∴cos∠AEH==,

∴EH=AE.

∵点E为AB的中点,∴BE=AE,

∴EF:EG=EQ:EH=BE:AE=1:.

==

h【】

tt

p【】

:/【】/www.17jiaoyu.com/stzx/zjzk/jiaoyu664/jiaoyu722/201310/20131006202【】

400_16861.html

去掉那几个【】。上面的答案可能有几个数字没有。我更好奇为什么不自己搜……

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!