当前位置:新励学网 > 秒知问答 > 数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点

发表时间:2024-07-17 02:01:50 来源:网友投稿

  1、平面向量基本概念

  有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;

  向量的模:有向线段AB的长度叫做向量的模,记作|AB|;

  零向量:长度等于0的向量叫做零向量,记作或0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);

  相等向量:长度相等且方向相同的向量叫做相等向量;

  平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;

  单位向量:模等于1个单位长度的向量叫做单位向量,通常用e表示,平行于坐标轴的单位向量习惯上分别用i、j表示。

  相反向量:与a长度相等,方向相反的向量,叫做a的'相反向量,—(—a)=a,零向量的相反向量仍然是零向量。

  2、平面向量运算

  加法与减法的代数运算:

  (1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2)。

  向量加法与减法的几何表示:平行四边形法则、三角形法则。

  向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);

  实数与向量的积:实数与向量的积是一个向量。

  (1)||=||·||;

  (2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0。

  两个向量共线的充要条件:

  (1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=。

  (2)若=(),b=()则‖b。

  3、平面向量基本定理

  若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2。

  4、平面向量有关推论

  三角形ABC内一点O,OA·OB=OB·OC=OC·OA,则点O是三角形的垂心。

  若O是三角形ABC的外心,点M满足OA+OB+OC=OM,则M是三角形ABC的垂心。

  若O和三角形ABC共面,且满足OA+OB+OC=0,则O是三角形ABC的重心。

  三点共线:三点A,B,C共线推出OA=μOB+aOC(μ+a=1)

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!