当前位置:新励学网 > 秒知问答 > 如何证明三角形的重心是每条中线的三等分点。

如何证明三角形的重心是每条中线的三等分点。

发表时间:2024-07-17 06:03:17 来源:网友投稿

证明三角形的重心是每条中线的三等分点的方法如下:

引△ABC之二中线BE,CF,则必于其形内相交,设其交点为G。连结AG并延长至H,使GH=AG,且与BC相交于D。再连结HB,HC。在△ABH内,因为F,G分别为AB和AH的中点,故FG‖BH,即GC‖BH。同理BG‖HC。

故GBHC为平行四边形、于是其对角线BC,GH互相平分于D。由于AD也是中线,故三中线同交于一点G得证。

又∵AG=GH=2GD,

∴AG=(2/3)AD。

同理BG=(2/3)BE,CG=(2/3)CF。三中线的交点谓之三角形的重心,由上可知,重心是中线的三等分点。

三角形性质

1、在平面上三角形的内角和等于180°(内角和定理)。

2、在平面上三角形的外角和等于360°(外角和定理)。

3、在平面上三角形的外角等于与其不相邻的两个内角之和。

推论:三角形的一个外角大于任何一个和它不相邻的内角。

4、一个三角形的三个内角中最少有两个锐角。

5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!