反比例函数的几何意义
反比例函数的几何意义是一般的,如果两个变量x,y之间的关系可以表示成y=k/x(k为常数,k≠0,x≠0),其中k叫做反比例系数,x是自变量,y是x的函数,x的取值范围是不等于0的一切实数,且y也不能等于0。k>0时,图象在一、三象限。k<0时,图象在二、四象限。k的绝对值表示的是x与y的坐标形成的矩形的面积。
1.自变量的取值范围:
①在一般的情况下,自变量x的取值范围可以是不等于0的任意实数。
②函数y的取值范围也是任意非零实数。
2.解析式
其中x是自变量,y是x的函数,其定义域是不等于0的一切实数,
即{x|x≠0,x属于R这个范围。R是实数范围。也就是x是实数}。
因为在反比例函数的解析式y=k/x(k≠0)中,只有一个待定系数k,确定了k的值,也就确定了反比例函数的解析式。因而一般只要给出一组x或者y的值或图像上任意一点的坐标,然后代入y=k/x中即可求出k的值,进而确定反比例函数的解析式。
3.函数的性质
(1)单调性
①当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;
②当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大;
③当k>0时,函数在x0上同为减函数;k0上同为增函数。
(2)相交性
因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交,只能无限接近x轴,y轴。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇