河北省中考试卷答案
2009年河北省初中毕业生升学文化课考试
数学试题参考答案
一、选择题
题号123456789101112
答案AADCBBABCCDC
二、填空题
13.>;14.1.2×107;15.36.4;16.1;17.3;18.20.
三、解答题
19.解:原式=
=.
当a=2,时,
原式=2.
【注:本题若直接代入求值,结果正确也相应给分】
20.解:(1)∵OE⊥CD于点E,CD=24,
∴ED==12.
在Rt△DOE中,
∵sin∠DOE==,
∴OD=13(m).
(2)OE=
=.
∴将水排干需:
5÷0.5=10(小时).
21.解:(1)30%;
(2)如图1;
(3);
(4)由于月销量的平均水平相同,从折线的走势看,A品牌的月销量呈下降趋势,而B品牌的月销量呈上升趋势.
所以该商店应经销B品牌电视机.
22.解:(1)-3.
t=-6.
(2)分别将(-4,0)和(-3,-3)代入,得
解得
向上.
(3)-1(答案不唯一).
【注:写出t>-3且t≠0或其中任意一个数均给分】
23.解:实践应用
(1)2;.;.
(2).
拓展联想
(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.
又∵三角形的外角和是360°,
∴在三个顶点处,⊙O自转了(周).
∴⊙O共自转了(+1)周.
(2)+1.
24.(1)证明:∵四边形BCGF和CDHN都是正方形,
又∵点N与点G重合,点M与点C重合,
∴FB=BM=MG=MD=DH,∠FBM=∠MDH=90°.
∴△FBM≌△MDH.
∴FM=MH.
∵∠FMB=∠DMH=45°,∴∠FMH=90°.∴FM⊥HM.
(2)证明:连接MB、MD,如图2,设FM与AC交于点P.
∵B、D、M分别是AC、CE、AE的中点,
∴MD∥BC,且MD=BC=BF;MB∥CD,
且MB=CD=DH.
∴四边形BCDM是平行四边形.
∴∠CBM=∠CDM.
又∵∠FBP=∠HDC,∴∠FBM=∠MDH.
∴△FBM≌△MDH.
∴FM=MH,
且∠MFB=∠HMD.
∴∠FMH=∠FMD-∠HMD=∠APM-∠MFB=∠FBP=90°.
∴△FMH是等腰直角三角形.
(3)是.
25.解:(1)0,3.
(2)由题意,得
,∴.
,∴.
(3)由题意,得.
整理得.
由题意得
解得x≤90.
【注:事实上,0≤x≤90且x是6的整数倍】
由一次函数的性质可知,当x=90时,Q最小.
此时按三种裁法分别裁90张、75张、0张.
26.解:(1)1,;
(2)作QF⊥AC于点F,如图3,AQ=CP=t,∴.
由△AQF∽△ABC,,
得.∴.
∴,
即.
(3)能.
①当DE∥QB时,如图4.
∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ∽△ABC,得,
即.解得.
②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ=90°.
由△AQP∽△ABC,得,
即.解得.
(4)或.
【注:①点P由C向A运动,DE经过点C.
方法一、连接QC,作QG⊥BC于点G,如图6.
,.
由,得,解得.
方法二、由,得,进而可得
,得,∴.∴.
②点P由A向C运动,DE经过点C,如图7.
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇