复合函数求导公式的过程是怎么推导的
证明如下:
假设我们要求f(g(x))对x的导数,且f(g(x))和g(x)均可导。
首先根据定义:当h->0时,g'(x)=lim(g(x+h)-g(x))/h,所以当h->0时,lim(g(x+h)-g(x))/h-g'(x)->0
设v=(g(x+h)-g(x))/h-g'(x)
就有:g(x+h)=g(x)+(g'(x)+v)h
同理:f(y+k)=f(y)+(f'(y)+u)k
所以f(g(x)+[g'(x)+v]h)=f(g(x))+[f'(g(x))+v]*[g'(x)+v]h(其实就是y=g(x),k=[g'(x)+v]h)
所以(f(g(x+h))-f(g(x)))/h=(f(g(x))+[f'(g(x))+u]·[g'(x)+v]h−f(g(x)))/h
=[f'(g(x))+u]·[g'(x)+v]
当h->0时,u和v都->0,这个容易看。
所以当h->0时,(f(g(x+h))-f(g(x)))/h=[f'(g(x))+0]·[g'(x)+0]
=f'(g(x))·g'(x)
然后f'(g(x))=f'(g(x))·g'(x)
证毕
简介
不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠Ø时,二者才可以构成一个复合函数。设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u。
有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(compositefunction),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇