当前位置:新励学网 > 秒知问答 > 复合函数的单调性是什么

复合函数的单调性是什么

发表时间:2024-07-18 18:53:41 来源:网友投稿

复合函数的单调性法则是“同增异减”。具体内涵为假设一个复合函数的解析式为y=f(u(x)),则其外层函数为y=f(u),内层函数为u=u(x)。

(1)如果在一个区间上以u为变量的外层函数y=f(u)和以x为变量的内层函数的单调性相同(同增或同减),则y=f(u(x))为这个区间上的增函数。

(2)如果在一个区间上以u为变量的外层函数y=f(u)和以x为变量的内层函数的单调性相反(“内增外减”或“内减外增”),则y=f(u(x))为这个区间上的减函数。

上面复合函数的增减,可以用数学式子和符号简化为下图所示四种情况:

设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系。

这种函数称为复合函数(compositefunction),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!