函数的单调性和极值最值怎么求
可以用导数求解。
解:设函数y=f(x)
求其单调性一般是对其求导数,y’=f’(x)。
当f’(x)>0时,f(x)单调递增;
当f’(x)<0时,f(x)单调递减;
当f’(x)=0时f(x)取得极值。
最小值:设函数y=f(x)的定义域为I,如果存在实数M满足:
①对于任意实数x∈I,都有f(x)≥M;
②存在x0∈I。使得f(x0)=M,那么我们称实数M是函数y=f(x)的最小值。
最大值:设函数y=f(x)的定义域为I,如果存在实数M满足:
①对于任意实数x∈I,都有f(x)≤M;
②存在x0∈I。使得f(x0)=M,那么我们称实数M是函数y=f(x)的最大值。
扩展资料:
并非每个周期函数都有最小正周期。
周期函数有以下性质:
(1)若T(T≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(T≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)T*是f(x)的最小正周期,且T1、T2分别是f(x)的两个周期,则T1/T2∈Q(Q是有理数集)
(6)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(7)周期函数f(x)的定义域M必定是双方无界的集合。
两个一次函数表达式中:
当两个一次函数表达式中的k相同,b也相同时则这两个一次函数的图像重合;
当两个一次函数表达式中的k相同,b不相同时则这两个一次函数的图像平行;
当两个一次函数表达式中的k不相同,b不相同时则这两个一次函数的图像相交;
当两个一次函数表达式中的k不相同,b相同时则这两个一次函数图像交于y轴上的同一点(0,b);
当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。
参考资料:百度百科——函数
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇