当前位置:新励学网 > 秒知问答 > 单调递增的定义是什么

单调递增的定义是什么

发表时间:2024-07-19 14:11:45 来源:网友投稿

单调递增的定义:

一般地设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数。

函数的单调性也叫函数的增减性;函数的单调性是对某个区间而言的,它是一个局部概念。

单调性的判断方法

1、导数法

首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。

2、定义法

设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数。

3、性质法

若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有:

①f(x)与f(x)+C(C为常数)具有相同的单调性;

②f(x)与c•f(x)当c>0具有相同的单调性,当c<0具有相反的单调性;

③当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;

④当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!