当前位置:新励学网 > 秒知问答 > 复数的实部和虚部

复数的实部和虚部

发表时间:2024-07-19 15:14:37 来源:网友投稿

我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。

虚部的定义与表示方法

定义

复数z=x+iy,其中x,y是任意实数,x称为复数z的实部,y称为复数z的虚部。[1](注意虚部不包括虚数单位i)

代数表示方法

在英文中实数是RealQuantity,所以一般取Real的前两个字母“Re”表示一个复数的实部;虚数是ImaginaryQuantity,所以一般取Imaginary的前两个字母“Im”表示一个复数的虚部。例如:

Re(2+3i)=2,Im(2+3i)=3;

Re(-7.38i)=0,Im(-7.38i)=-7.38。

复平面表示方法

复平面当中的点(x,y)来表示复数x+iy,其中y轴为虚轴,y的值即为虚部。

定义复数的实部与虚部的作用

一、规定两个复数相等

我们规定当且仅当两个复数的实部与虚部分别相等时,这两个复数就相等。

再从向量的角度来看,由于a1=a2,b1=b2,所以复数a1+b1i与复数a2+b2i所表示的两个向量的模相同,且这两个向量的方向相同。

二、定义共轭复数

当两个复数的实部相等,虚部互为相反数时,把这两个复数叫做互为共轭复数。

复数a+bi与a-bi互为共轭复数。

a+bi乘以a-bi就等于a2+b2。

三、定义复数的模

利用勾股定理,可以在复平面内求得表示该复数的点到原点的距离。

四、定义复数的辐角主值

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!