当前位置:新励学网 > 秒知问答 > 离散数学题目用图论解

离散数学题目用图论解

发表时间:2024-07-19 15:53:07 来源:网友投稿

转化为图论问题既是:

在一个N顶点的无向图中,当边数K>(N-1)(N-2)/2时,证明其为连通图,证明如下:

假设存在一个N节点K条边无向图,为不连通的,即设它存在2个连通分支(连通分支越多,边数越少,故只需讨论两个连通分支的情况),并设一个连通分支的节点数为S,则另一个连通分支为N-S,则易知:在这个图中,边数最大条数为

(S-1)(S)/2+(N-S)(N-S-1)/2,(每一个连通分支为完全图),整理得,边数最大为:N×N-(2S+1)+S×S(S>=1),而K>(N-1)(N-2)/2=N×N-3N+2>=N×N-(2S+1)+S×S,故,在这两个连通分支之间必存在边,结论得证。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!