当前位置:新励学网 > 秒知问答 > 正交矩阵的特征值为什么是1或负1

正交矩阵的特征值为什么是1或负1

发表时间:2024-07-19 17:38:24 来源:网友投稿

原因如下:

设λ是正交矩阵A的特征值,x是A的属于特征值λ的特征向量。

即有Ax=λx,且x≠0。

两边取转置得x^TA^T=λx^T。

所以x^TA^TAx=λ^2x^Tx。

因为A是正交矩阵,所以A^TA=E。

所以x^Tx=λ^2x^Tx。

由x≠0知x^Tx是一个非零的数。

故λ^2=1。

所以λ=1或-1。

正交矩阵的相关定理:

1、在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。

2、方阵A正交的充要条件是A的.行(列)向量组是单位正交向量组。

3、方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基。

4、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量。

5、A的列向量组也是正交单位向量组。

6、正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!