当前位置:新励学网 > 秒知问答 > 如何判断反常积分的敛散性

如何判断反常积分的敛散性

发表时间:2024-07-20 01:35:11 来源:网友投稿

判断反常积分的敛散是极限的存在性与无穷小或无穷大的比阶问题。

1、第一类无穷限

而言当x→+∞时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛。

2、第二类无界函数而言,当x→a+时,f(x)必为无穷大。且无穷小的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。

反常积分分类:

1、无穷区间反常积分,每个被积函数只能有一个无穷限,若上下限均为无穷限,则分区间积分。

2、无界函数反常积分,即瑕积分,每个被积函数只能有一个瑕点,多个瑕点则分区间积分。

3、混合反常积分,对于上下限均为无穷,或被积分函数存在多个瑕点,或上述两类的混合,称为混合反常积分。对混合型反常积分,必须拆分多个积分区间,使原积分为无穷区间和无界函数两类单独的反常积分之和。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!