当前位置:新励学网 > 秒知问答 > 如何证明三点一线

如何证明三点一线

发表时间:2024-07-21 22:48:56 来源:网友投稿

总结一下方法吧……

第一大类:纯几何

①原始定义:证明ABC(依次排列,B在AC之间)三点共线,只证∠ABC=180°或者AC=AB+BC。

这个很好理解。

衍生出方法:1.外面还有D点,而且DB⊥AB且DB⊥CB则ABC三点共线

2.对顶角相等的逆定理

3.楼上说的反证法

……很多,具体碰到题再随机应变吧。

②线段比值法:著名的梅涅劳斯定理(逆定理)

详见百度百科。

③用已知定理。数学里面有很多定理是用来证明三点共线的,比如欧拉线定理、西姆松定理、帕斯卡定理……只要看题目里面的情境是不是符合这些定理成立的条件。

第二大类:解析几何——平面向量

证明向量AB和向量BC平行(即AB向量=αBC向量,α是非零实数),当然也可以证明向量AC和BC,AB和AC共线……

衍生方法:①证明AB、BC共用同一个法向量n即n·AB=n·AC=0②证明AB·BC(点乘)=|AB|·|AC|或-|AB||AC|。③相对来说稍微高深一点的:另外找一点D,如果向量DB可以写成

a向量DA+(1-a)向量DC这种形式,则ABC三点共线。就用上述AB向量=αBC向量这个条件,把AB换成DB-DA,BC换成DC-DB带进去就得到。

第三大类:解析几何——方程

证明A、B、C三个点坐标满足同一个直线方程y=kx+b(当然直线也可能时其他形式,比如Ax+By+C=0)

衍生方法:可以证明AB直线斜率等于BC斜率……

暂时只能想到这么多,毕竟很久没做中学数学了。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!