当前位置:新励学网 > 秒知问答 > 复合函数求导公式推导

复合函数求导公式推导

发表时间:2024-07-22 05:00:47 来源:网友投稿

复合函数求导公式推导:

F'(g(x))=[F(g(x+dx))-F(g(x))]/dx(1)

g(x+dx)-g(x)=g'(x)*dx=dg(x)(2)

g(x+dx)=g(x)+dg(x)(3)

F'(g(x))=[F(g(x)+dg(x))-F(g(x))]/dx=

[F(g(x)+dg(x))-F(g(x))]/dg(x)*dg(x)/dx=

F'(g)*g'(x)

基本函数的求导公式

1.y=c(c为常数)y'=0

2.y=x^ny'=nx^(n-1)

3.y=a^xy'=a^xlna

y=e^xy'=e^x

4.y=logaxy'=logae/x

y=lnxy'=1/x

5.y=sinxy'=cosx

6.y=cosxy'=-sinx

7.y=tanxy'=1/cos^2x

8.y=cotxy'=-1/sin^2x

9.y=arcsinxy'=1/√1-x^2

10.y=arccosxy'=-1/√1-x^2

11.y=arctanxy'=1/1+x^2

12.y=arccotxy'=-1/1+x^2

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!