怎样学好逻辑的排列组合
学好逻辑的排列组合,可以参加相关课程的培训班或通过视频课程进行学习。上课时应认真听讲,在老师的带领下,记录与学习任务和目标有关的知识点,遇到不明白的地方,及时提问。课外要按时按质完成作业,并预习和复习课本知识。还可以阅读其它相关的专业书籍,多做习题巩固理论知识。
高中的“排列组合”难吗?怎么学好?
一、排列组合部分是中学数学中的难点之一,原因在于
(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;
(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
把那几个常用公式记的很牢很牢的,随便问你一下,你就能马上把公式反应在大脑里,这是基础要求.其次是要融会贯通,有些变形的式子,你也要能一眼看穿它的本质.然后就是分清楚什么是排列,什么是组合,这个需要你知道很顺序有没有关系.跟顺序有关的是排列,无关的是组合.这是解题的时候第一步就要知道的东西,一道题目是排列问题,或者是组合问题,或者两者都有,是你看到题目后首先想到需要明确的,知道了这,你才能不会在答题的时候出现与答题点相悖的情况.最后就是需要你列式解答了,这个过程中你需要知道的是题目中的哪些信息有用,哪些是迷惑你的信息.
二项式定理就是要背公式,然后要有"整体的观点",也就是说,有的式子很复杂,但是你要是能把那些复杂的式子看作一个整体的话,就会发现是那么简单,然后就可以很好的解题了.有的时候,运用公式的条件不具备,那么你就想个办法,做个等量代换,比如乘以一个数,再除以一个数,这样在括号里的式子就能使用公式了.然后计算出来以后再化简,就能得到你需要的结果.
以上是我个人的学习心得,不知道对你有没有用,不过方法你可以试试.最关键的还是要记住公式,然后有针对性的多看例题,多做跟例题相关的习题,这样就一定能学好排列组合和二项式定理.因为数学就是一个"悟跟练"的过程,祝你好运.还有啥问题可以继续贴出,希望我能帮你解决!
高二,最近学排列组合总是学不明白,该怎么办?
首先要动笔。排列组合是一个需要很强的逻辑思维的,需要考虑到每一个情况,由于人的想象有一定局限性,可能会落下某种情况或是无法统计情况,这时候就要动笔,动笔不光是画图,还有计算和统计都要动笔,有些简单的统计,可能计算数目会很麻烦,这时候把可能出现的情况都列出来,然后再算出总数,同样,画图也很重要。
其次排列组合是有方法的,例如“插空法”,题中要求“互不相邻”的条件时就会用到,可又能是每几个互不相邻,再比如“捆包法”(这个貌似地方不同叫法也不同),如果有两个或几个是必须相邻的,就把它们先捆在一起,当做一个排,排完之后,捆一起的这包再排列。方法主要靠老师教的和自己总结什么样的题用什么方法,这样会事半功倍。
再次理清思路,不管是排列组合还是别的数学题,一定要理清思路,不能想起来一个条件或是一种情况有用就直接写上了。每一道题都会有一个最直接的思路,比如求圆柱体积,要先求半径再求底面积,然后求体积,排列组合也是一样,根据题的特点,一定有自己的一个思路,先求红球的还是先求白球的,思路一定要清晰,不要乱,乱了就容易重复或是缺失情况。
排列组合是组合学最基本的概念。所谓排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
虽然数学始于结绳计数的远古时代,由于那时社会的生产水平的发展尚处于低级阶段,谈不上有什么技巧。随着人们对于数的了解和研究,在形成与数密切相关的数学分支的过程中,如数论、代数、函数论以至泛函的形成与发展,逐步地从数的多样性发现数数的多样性,产生了各种数数的技巧。
如何学好排列组合?
高中的排列组合主要是选修2-3课本上的第一章 计数原理,其中第一节第二节是涉及高考中的排列组合问题,且主要以5分题的形式出现。
对于怎么样去掌握排列组合问题,我的意见是 “掌握原理,运用思路,分析模型”。
其中原理就是指分类加法技术原理与分步乘法技术原理,而需要同学们去积累的则是排列组合实际问题的模型。
对于原理很多同学都会轻视,认为这和排列组合有什么关系啊。其实并不是这样其实解决排列组合的题目就是要把原理往实际问题中去套,当对很多问题没有思路的时候其实仔细考虑应用原理就可以突破题目。
一、原理
首先是课本的定义
分类加法技数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。
分步乘法计数原理:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。
区别两种计数原理的方式就是看能否单独完成这个事件,二者均可就是加法原理,二者都要就是乘法原理
二、思路
1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。
2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事件的对立面,再用全部可能的总数减去对立面的个数即可。正难则反的道理就是这样。
3、先取再排(先分组再排列):如果所排列的数并非所有的元素,就要讲过程拆分为两个阶段,可先将所需元素取出,然后再进行排列。
先更到这里然后再把插空捆绑分组涂色和错位排列都具体讲。
三、原理
1、捆绑法(整体法):当题目中有相邻元素时,可将相邻元素视为一个整体与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。例题 5个人排队,其中甲乙相邻,共有多少种不同的排法由于甲乙相邻讲甲乙视为整体 四个元素的全排列乘甲乙之间全排列。
2、插空法:当题目中有不相邻元素时,则可考虑用剩余元素搭台,不相邻元素进行插空,再进行各自的排序
注:(1)要注意插空的过程是否可以插在两边
(2)要从题目中判断是否需要各自排序
例题 6个人排队,其中甲乙不相邻,则共有多少种不同的排法
3.错位排列
排列好的n个元素,经过一次再排序后,每个元素都不在原来的位置上,则称为这n个元素的一个错位排列
通俗的解释就是比如四个不同的茶杯,取下他们的杯盖再盖上,而每个杯盖都不对应于自己的杯子
是错别排列
一般老师会让同学们记住 3个元素的错位排列是2,4个元素的错位排列是9,5个元素的错位排列是44 这些都可以用穷举的办法数出来,但是我的同桌研究出了错位排列的递推公式。
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇