当前位置:新励学网 > 秒知问答 > 初二数学三角形知识点

初二数学三角形知识点

发表时间:2024-07-24 08:56:12 来源:网友投稿

对于新学期来讲又要开启新的征途了,新学期新气象除了要掌握好已学的知识定理和方法技巧,更要从容的面对新学年带来的新变化,对于三角形的学习初一初二只是在为初三打基础,下面就由新励学网小编为大家带来初二数学三角形知识点,一起来看看吧。

初二数学三角形知识点

全等三角形

性质:全等三角形的对应边相等、对应角相等。

全等三角形的周长相等、面积相等。

全等三角形的对应边上的对应中线、角平分线、高线分别相等。

全等三角形的判定:

边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等。

角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等。

推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等。

边边边公理(SSS) 有三边对应相等的两个三角形全等。

斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等。

方法总结:出现两等边三角形、两等腰直角三角形通常用 SAS 证全等;等腰直角三角形常见辅助线添法--连结直角顶点和斜边中点;两直角三角形证全等常用方法:SAS,AAS,HL;出现等腰直角三角形或正方形可能用到 K 型全等。

角平分线

性质定理:角平分线上的点到角两边的距离相等。判定定理:到角两个边距离相等的点在这个角的角平分线上。拓展:三角形三个角的角平分线的交点到三条边的距离相等。

角平分线通常用于求点到直线距离、三角形面积角度。拓展三个概念:

重心:三角形中线的交点,重心分中线上下比为2:1。

内心:三角形角平分线的交点,内心到三边的距离相等。

外心:三角形垂直平分线的交点,外心到三个顶点的距离相等。

垂直平分线

性质定理:线段垂直平分线上的点到线段两个端点的距离相等。

如何判定:到线段两个端点距离相等的点在这条线段的垂直平分线上。

拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。

相关方法总结:出现一点到两点距离相等的题型,一般要用到垂直平分线;题中看到线段垂直平分线,要想到垂直平分线垂直且平分线段,垂直平分线上点到线段两端点距离相等,相等边所对应角相等;翻折题型中常用到垂直平分线、勾股定理。

等腰三角形

性质定理:等腰三角形的两个底角相等(等边对等角)

等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(三线合一)

判断:一个三角形的两个相等的角所对的边也相等(等角对等边)

等边三角形

性质定理:等边三角形的三条边都相等;等边三角形的三个内角都相等,都等于60度。等边三角形的每一条边都能运用三线合一这一性质。

判断定理:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有两个角是 60°的三角形是等边三角形;有一个角是 60°的等腰三角形是等边三角形。

方法总结:出现等腰三角形通常要分类讨论,在选择题和填空题中,切勿因为没有分类讨论而导致搞错答案。

以上是由新励学网小编为大家分享的初二数学三角形知识点,希望能给大家带来帮助。三角形作为初中数学的重点内容之一,也是各地中考命题的必考知识,要掌握好基础知识和基本技能,重视学习的过程与方法,希望所有的学生在平时的学习中都要认真对待,以便取得更好的成绩。

初二数学三角形相关知识点整理

一、三角形的有关概念

1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上②三条线段③首尾顺次相接④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高

(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段

②三角形的角平分线、中线都在三角形内部且都交于一点三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、三角形的'边和角

三边关系:三角形中任意两边之和大于第三边。

由三边关系可以推出:三角形任意两边之差小于第三边。

三、三角形内、外角的关系

1.三角形的内角和等于180°。

2.直角三角形的两个锐角互余。

3.三角形的一外角等于和它不相邻的两个内角之和,三角形的一个外角大于任何一个和它不相邻的内角。

4.三角形的外角和为360°。

初二数学三角形知识点总结有哪些

数学是中考重要的组成部分之一,而数学的知识点有很多,需要在平时一点一滴积累起来。下面是我为你推荐初二数学三角形知识点 总结 ,希望能帮到你。

初二数学三角形知识点总结

考点一、线段垂直平分线,角的平分线,垂线

1、线段垂直平分线的性质定理及逆定理

垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。

线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

2、角的平分线及其性质

一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。角的平分线有下面的性质定理:

(1)角平分线上的点到这个角的两边的距离相等。

(2)到一个角的两边距离相等的点在这个角的平分线上。

3垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。

2、三角形中的主要线段

(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性

三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

6、三角形的三边关系定理及推论

(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:

①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的角关系

三角形的内角和定理:三角形三个内角和等于180°。推论:

①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中:等角对等边等边对等角大角对大边大边对大角。等角的补角相等,等角的余角相等。

考点二、全等三角形

1、全等三角形的概念

能够完全重合的两个三角形叫做全等三角形。

能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。

2、三角形全等的判定三角形全等的判定定理:直角三角形全等的判定:

对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)

考点三、等腰三角形

1、等腰三角形的性质

(1)等腰三角形的性质定理及推论:

定理:等腰三角形的两个底角相等(简称:等边对等角)

推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°。

(2)等腰三角形的其他性质:

①等腰直角三角形的两个底角相等且等于45°

②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

2、等腰三角形的判定

等腰三角形的判定定理及推论:

定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。

推论1:三个角都相等的三角形是等边三角形

推论2:有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

初二数学知识点总结:轴对称

一、知识框架:

二、知识概念:

1.基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.

⑸等边三角形:三条边都相等的三角形叫做等边三角形.

2.基本性质:

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.

②对称的图形都全等.

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等.

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.

⑶关于坐标轴对称的点的坐标性质

①点P(x,y)关于x轴对称的点的坐标为P'(x,y).

②点P(x,y)关于y轴对称的点的坐标为P"(x,y).

⑷等腰三角形的性质:

①等腰三角形两腰相等.

②等腰三角形两底角相等(等边对等角).

③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).

⑸等边三角形的性质:

①等边三角形三边都相等.

②等边三角形三个内角都相等,都等于60°

③等边三角形每条边上都存在三线合一.

④等边三角形是轴对称图形,对称轴是三线合一(3条).

3.基本判定:

⑴等腰三角形的判定:

①有两条边相等的三角形是等腰三角形.

②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).

⑵等边三角形的判定:

①三条边都相等的三角形是等边三角形.

②三个角都相等的三角形是等边三角形.

③有一个角是60°的等腰三角形是等边三角形.

4.基本 方法 :

⑴做已知直线的垂线:

⑵做已知线段的垂直平分线:

⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.

⑷作已知图形关于某直线的对称图形:

⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.

初二数学知识点总结:整式的乘除与分解因式

一、知识框架:

二、知识概念:

1.基本运算:

⑴同底数幂的乘法

⑵幂的乘方

⑶积的乘方

2.计算公式:

⑴平方差公式

⑵完全平方公式

3.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.

4.因式分解方法:

⑴提公因式法:找出最大公因式.

⑵公式法:

①平方差公式

猜你喜欢:

1. 初中数学必考知识点的归纳

2. 初一数学上册知识点汇总归纳

3. 初中数学三角形教案有哪些

4. 初中数学数与代数知识点归纳总结

5. 初中数学三角形知识点总结

八年级上册数学全等三角形完整知识点

定义

能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中相似比为1:

1、的特殊情况)

当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;

(3)有公共边的,公共边一定是对应边;

(4)有公共角的,角一定是对应角;

(5)有对顶角的,对顶角一定是对应角;

表示:全等用“≌”表示,读作“全等于”。

判定公理

1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。

2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。

3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。

由3可推到

4、有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)

5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”) 所以SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。

注意:在全等的判定中,没有AAA角角角和SSA(特例:直角三角形为HL,属于SSA)边边角,这两种情况都不能唯一确定三角形的形状。 A是英文角的缩写(angle),S是英文边的缩写(side)。

H是英文斜边的缩写(Hypotenuse),L是英文直角边的缩写(leg)。

6.三条中线(或高、角分线)分别对应相等的两个三角形全等。

性质

三角形全等的条件:

1、全等三角形的对应角相等。

2、全等三角形的'对应边相等

3、全等三角形的对应顶点相等。

4、全等三角形的对应边上的高对应相等。

5、全等三角形的对应角平分线相等。

6、全等三角形的对应中线相等。

7、全等三角形面积相等。

8、全等三角形周长相等。

9、全等三角形可以完全重合。

三角形全等的方法:

1、三边对应相等的两个三角形全等。(SSS)

2、两边和它们的夹角对应相等的两个三角形全等。(SAS)

3、两角和它们的夹边对应相等的两个三角形全等。(ASA)

4、有两角及其一角的对边对应相等的两个三角形全等(AAS)

5、斜边和一条直角边对应相等的两个直角三角形全等。(HL)

推论

要验证全等三角形,不需验证所有边及所有角也对应地相同。以下判定是由三个对应的部分组成,即全等三角形可透过以下定义来判定:

S.S.S. (Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应地相等的话,该两个三角形就是全等。

S.A.S. (Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应地相等,且两条边夹着的角都对应地相等的话,该两个三角形就是全等。

A.S.A. (Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应地相等,且两个角夹着的边都对应地相等的话,该两个三角形就是全等。

A.A.S. (Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应地相等,且没有被两个角夹着的边都对应地相等的话,该两个三角形就是全等。

R.H.S. / H.L. (Right Angle-Hypotenuse-Side)(直角、斜边、边):各三角形的直角、斜边及另外一条边都对应地相等的话,该两个三角形就是全等。

但并非运用任何三个相等的部分便能判定三角形是否全等。以下的判定同样是运用两个三角形的三个相等的部分,但不能判定全等三角形:

A.A.A. (Angle-Angle-Angle)(角、角、角):各三角形的任何三个角都对应地相等,但这并不能判定全等三角形,但则可判定相似三角形。

A.S.S. (Angle-Side-Side)(角、边、边):各三角形的其中一个角都相等,且其余的两条边(没有夹着该角),但这并不能判定全等三角形,除非是直角三角形。但若是直角三角形的话,应以R.H.S.来判定。 编辑本段 运用

1、性质中三角形全等是条件,结论是对应角、对应边相等。 而全等的判定却刚好相反。

2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。

3,当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。

4、用在实际中,一般我们用全等三角形测相等的距离。以及相等的角,可以用于工业和军事。

5、三角形具有一定的稳定性,所以我们用这个原理来做脚手架及其他支撑物体。

初二数学知识点归纳

临近考试了各科都会整理好知识点复习。接下来是我为大家整理的初二数学知识点归纳,希望大家喜欢!

初二数学知识点归纳一

第十一章 三角形

一、知识框架:

二、知识概念:

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

13、公式与性质:

⑴三角形的内角和:三角形的内角和为180°

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°

⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角

线,把多边形分成个三角形。

②边形共有条对角线。

第十二章 全等三角形

一、知识框架:

二、知识概念:

1、基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形。

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

⑷对应边:全等三角形中互相重合的边叫做对应边。

⑸对应角:全等三角形中互相重合的角叫做对应角。

2、基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定定理:

⑴边边边():三边对应相等的两个三角形全等。

⑵边角边():两边和它们的夹角对应相等的两个三角形全等。

⑶角边角():两角和它们的夹边对应相等的两个三角形全等。

⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。

⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线:

⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等。

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

5、证明的基本 方法 :

⑴明确命题中的已知和求证。(包括隐含条件,如公共边、公共角、对顶

角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

⑵根据题意,画出图形,并用数字符号表示已知和求证。

⑶经过分析,找出由已知推出求证的途径,写出证明过程。

第十三章 轴对称

一、知识框架:

二、知识概念:

1、基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一

个图形重合那么就说这两个图形关于这条直线对称。

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形。相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

⑸等边三角形:三条边都相等的三角形叫做等边三角形。

2、基本性质:

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

②对称的图形都全等。

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等。

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

⑶关于坐标轴对称的点的坐标性质

⑷等腰三角形的性质:

①等腰三角形两腰相等。

②等腰三角形两底角相等(等边对等角)。

③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。

④等腰三角形是轴对称图形,对称轴是三线合一(1条)。

⑸等边三角形的性质:

①等边三角形三边都相等。

②等边三角形三个内角都相等,都等于60°

③等边三角形每条边上都存在三线合一。

④等边三角形是轴对称图形,对称轴是三线合一(3条)。

3、基本判定:

⑴等腰三角形的判定:

①有两条边相等的三角形是等腰三角形。

②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对

等边)。

⑵等边三角形的判定:

①三条边都相等的三角形是等边三角形。

②三个角都相等的三角形是等边三角形。

③有一个角是60°的等腰三角形是等边三角形。

4、基本方法:

⑴做已知直线的垂线:

⑵做已知线段的垂直平分线:

⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。

⑷作已知图形关于某直线的对称图形:

⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。

初二数学知识点归纳二

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形这条直线叫做对称轴。

2.性质:

(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)。

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°。

7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形。

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

初二数学知识点归纳三

数据的收集、整理与描述

一.知识框架

二.知识概念

1.全面调查:考察全体对象的调查方式叫做全面调查.

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.

3.总体:要考察的全体对象称为总体.

4.个体:组成总体的每一个考察对象称为个体.

5.样本:被抽取的所有个体组成一个样本.

6.样本容量:样本中个体的数目称为样本容量.

7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.

8.频率:频数与数据总数的比为频率.

9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.

初二数学知识点归纳四

数的开方

1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x)注意:

(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.

2.平方根的性质:

(1)正数的平方根是一对相反数

(2)0的平方根还是0

(3)负数没有平方根.

3.平方根的表示方法:a的平方根表示为 和 .注意: 可以看作是一个数,也可以认为是一个数开二次方的运算.

4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为 .注意:0的算术平方根还是0.

5.三个重要非负数: a2≥0 ,|a|≥0 , ≥0 .注意:非负数之和为0,说明它们都是0.

6.两个重要公式:

(1) (a≥0)

(2) .

7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:

(1)a叫x的立方数(2)a的立方根表示为 即把a开三次方.

8.立方根的性质:

(1)正数的立方根是一个正数

(2)0的立方根还是0

(3)负数的立方根是一个负数.

9.立方根的特性: .

10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.

11.实数:有理数和无理数统称实数.

12.实数的分类:

(1) (2) .

13.数轴的性质:数轴上的点与实数一一对应.

14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示如果题目有近似要求,则结果应该用无理数的近似值表示.注意:

(1)近似计算时,中间过程要多保留一位(2)要求记忆: .

三角形

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)

1.三角形的角平分线定义:

三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.(如图) 几何表达式举例:

(1) ∵AD平分∠BAC

∴∠BAD=∠CAD

(2) ∵∠BAD=∠CAD

∴AD是角平分线

2.三角形的中线定义:

在三角形中连结一个顶点和它的对边的中点的线段叫做三角形的中线.(如图)

几何表达式举例:

(1) ∵AD是三角形的中线

∴ BD = CD

(2) ∵ BD = CD

∴AD是三角形的中线

3.三角形的高线定义:

从三角形的一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线.

(如图)

几何表达式举例:

(1) ∵AD是ΔABC的高

∴∠ADB=90°

(2) ∵∠ADB=90°

∴AD是ΔABC的高

※4.三角形的三边关系定理:

三角形的两边之和大于第三边,三角形的两边之差小于第三边.(如图)

几何表达式举例:

(1) ∵AB+BC&gtAC

∴……………

(2) ∵ AB-BC

∴……………

5.等腰三角形的定义:

有两条边相等的三角形叫做等腰三角形. (如图)

几何表达式举例:

(1) ∵ΔABC是等腰三角形

∴ AB = AC

(2) ∵AB = AC

∴ΔABC是等腰三角形

6.等边三角形的定义:

有三条边相等的三角形叫做等边三角形. (如图)

几何表达式举例:

(1)∵ΔABC是等边三角形

∴AB=BC=AC

(2) ∵AB=BC=AC

∴ΔABC是等边三角形

7.三角形的内角和定理及推论:

(1)三角形的内角和180°(如图)

(2)直角三角形的两个锐角互余(如图)

(3)三角形的一个外角等于和它不相邻的两个内角的和(如图)

※(4)三角形的一个外角大于任何一个和它不相邻的内角.

(1) (2) (3)(4) 几何表达式举例:

(1) ∵∠A+∠B+∠C=180°

∴…………………

(2) ∵∠C=90°

∴∠A+∠B=90°

(3) ∵∠ACD=∠A+∠B

∴…………………

(4) ∵∠ACD &gt∠A

∴…………………

初二数学知识点归纳五

一次函数

(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数

(2)正比例函数图像特征:一些过原点的直线

(3)图像性质:

①当k&gt0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大②当k&lt0时,函数y=kx的图像经过第二、四象限,从左向右下降,即随着x的增大y反而减小

(4)求正比例函数的解析式:已知一个非原点即可

(5)画正比例函数图像:经过原点和点(1,k)(或另外一个非原点)

(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数

(7)正比例函数是一种特殊的一次函数(因为当b=0时,y=kx+b即为y=kx)

(8)一次函数图像特征:一些直线

(9)性质:

①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得(当b&gt0,向上平移当b&lt0,向下平移)

②当k&gt0时,直线y=kx+b由左至右上升,即y随着x的增大而增大

③当k&lt0时,直线y=kx+b由左至右下降,即y随着x的增大而减小

④当b&gt0时,直线y=kx+b与y轴正半轴有交点为(0,b)

⑤当b&lt0时,直线y=kx+b与y轴负半轴有交点为(0,b)

(10)求一次函数的解析式:即要求k与b的值

(11)画一次函数的图像:已知两点

用函数观点看方程(组)与不等式

(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值

(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围

(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线

(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值从“形”的角度看,解方程组相当于确定两条直线交点的坐标

初二数学知识点归纳相关 文章 :

1.

2. 初二数学上册知识点总结

3. 初二数学知识点总结

4. 初二数学上知识点总结

5. 八年级数学上知识点归纳

6. 初二数学上册知识点全总结

7. 人教版初二上数学知识点归纳

8. 初中数学知识点整理:

9. 初二数学上册知识点梳理

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!