请问这道数学概率论题怎么做
f(x)=(1/2)e^(-|x|);-无穷<x<+无穷
首先要计算E(X)
利用E(X)=∫(-无穷->+无穷)xf(x)dx
E(X)
=∫(-无穷->+无穷)x[(1/2)e^(-|x|)]dx
=∫(-无穷->0)x[(1/2)e^x]dx+∫(0->+无穷)x[(1/2)e^(-x)]dx
=(1/2)∫(-无穷->0)xde^x-(1/2)∫(0->+无穷)xde^(-x)
分部积分∫udv=uv-∫vdu
=(1/2)[xe^x]|(-无穷->0)-(1/2)∫(-无穷->0)e^xdx
-(1/2)[xe^(-x)]|(0->+无穷)+(1/2)∫(0->+无穷)e^(-x)dx
=0-(1/2)∫(-无穷->0)e^xdx-0+(1/2)∫(0->+无穷)e^(-x)dx
=-(1/2)[e^x]|(-无穷->0)-(1/2)[e^(-x)]|(0->+无穷)
=0
再算E(X^2)
E(X^2)
=∫(-无穷->+无穷)x^2.[(1/2)e^(-|x|)]dx
=(1/2)∫(-无穷->0)x^2.e^xdx+(1/2)∫(0->+无穷)x^2.e^(-x)dx
=(1/2)∫(-无穷->0)x^2de^x-(1/2)∫(0->+无穷)x^2de^(-x)
=(1/2)[x^2.e^x]|(-无穷->0)-∫(-无穷->0)xe^xdx
-(1/2)[x^2.e^(-x)]|(0->+无穷)+∫(0->+无穷)xe^(-x)dx
=-∫(-无穷->0)xe^xdx+∫(0->+无穷)xe^(-x)dx
=-E(X)+2∫(0->+无穷)xe^(-x)dx
=2∫(0->+无穷)xe^(-x)dx
=-2∫(0->+无穷)xde^(-x)
=-2[xe^(-x)]|(0->+无穷)+2∫(0->+无穷)e^(-x)dx
=-2[e^(-x)]|(0->+无穷)
=2
D(X)=E(X^2)-[E(X)]^2=2
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇