当前位置:新励学网 > 秒知问答 > 单位向量正交化公式

单位向量正交化公式

发表时间:2024-07-25 20:07:45 来源:网友投稿

正交化会单位化就是把这个向量化为单位向量。

比如向量(1,2,3)单位化就是:[1/根号下(1^2+2^2+3^2),2/根号下(1^2+2^2+3^2),3/根号下(1^2+2^2+3^2)]=(1/根号14,2/根号14,3/根号14)

线性变换的特征向量是指在变换下方向不变,或者简单地乘以一个缩放因子的非零向量。特征向量对应的特征值是它所乘的那个缩放因子。

特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。

扩展资料:

假设它是一个线性变换,那么v可以由其所在向量空间的一组基表示为:其中vi是向量在基向量上的投影(即坐标),这里假设向量空间为n维。由此可以直接以坐标向量表示。利用基向量线性变换也可以用一个简单的矩阵乘法表示。

其特征函数满足如下特征值方程:其中λ是该函数所对应的特征值。

这样一个时间的函数,如果λ=0,它就不变,如果λ为正,它就按比例增长,如果λ是负的,它就按比例衰减。例如理想化的兔子的总数在兔子更多的地方繁殖更快,从而满足一个正λ的特征值方程。

若A是一个n×n矩阵,则pA为n次多项式,因而A最多有n个特征值。反过来代数基本定理说这个方程刚好有n个根,如果重根也计算在内的话。所有奇数次的多项式必有一个实数根,所以对于奇数n,每个实矩阵至少有一个实特征值。在实矩阵的情形,对于偶数或奇数的n,非实数特征值成共轭对出现。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!