当前位置:新励学网 > 秒知问答 > n趋于无穷大时,(n/n1)的n次方的极限

n趋于无穷大时,(n/n1)的n次方的极限

发表时间:2024-07-27 17:07:12 来源:网友投稿

n次方的极限为1/e,这是利用了一个重要极限=[1-1/(n+1)]^[-(n+1)*(-n)/(n+1)];=e^(-1)。当n->∞时,lim(1+1/n)^n=e。

故lim(n/(n+1))^n=lim1/(1+1/n)^n=1/e,主要是利用了n=1/(1/n)这个小技巧,故n/(n+1)=1/(n+1)/n)=1/(1+1/n)。

扩展资料:

注意几何意义中:

1、在区间(a-ε,a+ε)之外至多只有N个(有限个)点;

2、所有其他的点xN+1,xN+2,...(无限个)都落在该邻域之内。这两个条件缺一不可,如果一个数列能达到这两个要求,则数列收敛于a;而如果一个数列收敛于a,则这两个条件都能满足。

换句话说如果只知道区间(a-ε,a+ε)之内有{xn}的无数项,不能保证(a-ε,a+ε)之外只有有限项,是无法得出{xn}收敛于a的,在做判断题的时候尤其要注意这一点。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!