当前位置:新励学网 > 秒知问答 > 各种数学符号的名称

各种数学符号的名称

发表时间:2024-07-27 23:33:49 来源:网友投稿

数量符号如:i;

2+i,a,x,自然对数底e,圆周率π。

运算符号

如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),绝对值符号“| |”,微分(dx),积分(∫),闭合曲面(曲线)积分(∮)等。

关系符号

如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“⊆”是“包含”符号等。“|”表示“能整除”(例如a|b 表示 a能整除b),x可以代表未知数,y也可以代表未知数,任何字母都可以代表未知数。

结合符号

如小括号“()”中括号“[ ]”,大括号“{ }”横线“—”,比如(2+1)+3=6,[2.5x(23+2)+1]=x,{3.5+[3+1]+1=y

性质符号

如正号“+”,负号“-”,正负号“±”

省略符号

如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠), 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。

排列组合符号

C-组合数

A-排列数

N-元素的总个数

R-参与选择的元素个数

!-阶乘,如5!=5×4×3×2×1=120

C-Combination- 组合

A-Arrangement-排列

离散数学符号(未全)

∀ 全称量词

∃ 存在量词

├ 断定符(公式在L中可证)

╞ 满足符(公式在E上有效,公式在E上可满足)

┐ 命题的“非”运算

∧ 命题的“合取”(“与”)运算

∨ 命题的“析取”(“或”,“可兼或”)运算

→ 命题的“条件”运算

↔ 命题的“双条件”运算的

A<=>B 命题A 与B 等价关系

A=>B 命题 A与 B的蕴涵关系

A* 公式A 的对偶公式

wff 合式公式

iff 当且仅当

↑ 命题的“与非” 运算( “与非门” )

↓ 命题的“或非”运算( “或非门” )

□ 模态词“必然”

◇ 模态词“可能”

φ 空集

∈ 属于 A∈B 则为A属于B(∉不属于)

P(A) 集合A的幂集

|A| 集合A的点数

R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”

א 阿列夫

⊆ 包含

⊂(或下面加 ≠) 真包含

∪ 集合的并运算

∩ 集合的交运算

- (~) 集合的差运算

〡 限制

[X](右下角R) 集合关于关系R的等价类

A/ R 集合A上关于R的商集

[a] 元素a 产生的循环群

I (i大写) 环,理想

Z/(n) 模n的同余类集合

r(R) 关系 R的自反闭包

s(R) 关系 的对称闭包

CP 命题演绎的定理(CP 规则)

EG 存在推广规则(存在量词引入规则)

ES 存在量词特指规则(存在量词消去规则)

UG 全称推广规则(全称量词引入规则)

US 全称特指规则(全称量词消去规则)

R 关系

r 相容关系

R○S 关系 与关系 的复合

domf 函数 的定义域(前域)

ranf 函数 的值域

f:X→Y f是X到Y的函数

GCD(x,y) x,y最大公约数

LCM(x,y) x,y最小公倍数

aH(Ha) H 关于a的左(右)陪集

Ker(f) 同态映射f的核(或称 f同态核)

[1,n] 1到n的整数集合

d(u,v) 点u与点v间的距离

d(v) 点v的度数

G=(V,E) 点集为V,边集为E的图

W(G) 图G的连通分支数

k(G) 图G的点连通度

△(G) 图G的最大点度

A(G) 图G的邻接矩阵

P(G) 图G的可达矩阵

M(G) 图G的关联矩阵

C 复数集

N 自然数集(包含0在内)

N* 正自然数集

P 素数集

Q 有理数集

R 实数集

Z 整数集

Set 集范畴

Top 拓扑空间范畴

Ab 交换群范畴

Grp 群范畴

Mon 单元半群范畴

Ring 有单位元的(结合)环范畴

Rng 环范畴

CRng 交换环范畴

R-mod 环R的左模范畴

mod-R 环R的右模范畴

Field 域范畴

Poset 偏序集范畴

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!