齐次线性方程组有零解的条件
系数组成的行列式不等于0,矩阵的秩等于未知数的个数。
n元齐次线性方程组。设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初等行变换所化到的行阶梯形矩阵的非零行行数为r。
如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。
扩展资料:
设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初等行变换所化到的行阶梯形矩阵的非零行行数为r,则它的方程组的解只有以下两种类型:当r=n时,原方程组仅有零解;当r<n时,有无穷多个解(从而有非零解)。
对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。
系数组成的行列式不等于0,矩阵的秩等于未知数的个数。
常数项全为0的n元线性方程组
称为n元齐次线性方程组。设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初等行变换所化到的行阶梯形矩阵的非零行行数为r,则它的方程组的解只有以下两种类型:
(1)当r=n时,原方程组仅有零解;
(2)当r<n时,有无穷多个解(从而有非零解)。
扩展资料:
齐次线性方程组的性质
1、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。
2、齐次线性方程组的解的k倍仍然是齐次线性方程组的解。
3、齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。
4、n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地方程组有唯一的零解的充要条件是系数矩阵不为零。(克莱姆法则)
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇