当前位置:新励学网 > 秒知问答 > 离散型随机变量和超几何区别

离散型随机变量和超几何区别

发表时间:2024-07-28 05:02:38 来源:网友投稿

超几何分布表示的是一种特殊的离散型随机变量的分布列,所以超几何分布也是离散型随机变量的一种。超几何分布是属于离散型变量的,他们区别在于离散型变量的范围更广。 随机取值的变量就是随机变量,随机变量分为离散型随机变量与 连续型随机变量两种,随机变量的函数仍为随机变量。 有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,这种随机变量称为"离散型随机变量". 超几何分布是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还)。在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=C(M,k)·C(N-M,n-k)/C(N,n), C(a b)为古典概型的组合形式,a为下限,b为上限,此时我们称随机变量X服从超几何分布(hypergeometric distribution)

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!