当前位置:新励学网 > 秒知问答 > 薛定谔方程表达方法

薛定谔方程表达方法

发表时间:2024-07-28 05:09:06 来源:网友投稿

不过刚刚看到一个很好的式子:

▽²ψ(x,y,z)+(8π²m/h²)[E-U(x,y,z)]ψ(x,y,z)=0

我来解释一下:

先看一下数学形式:

这是一个二阶线性偏微分方程,ψ(x,y,z)是待求函数,它是x,y,z三个变量的复数函数(就是说函数值不一定是实数,也可能是虚数).式子最左边的倒三角是一个算符,意思是分别对ψ(x,y,z)的x,y,z坐标求偏导的平方和.

再看一下物理含义:

这是一个描述一个粒子在三维势场中的定态薛定谔方程.所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化.其中,E是粒子本身的能量;U(x,y,z)是描述势场的函数,假设不随时间变化.薛定谔方程有一个很好的性质,就是时间和空间部分是相互分立的,求出定态波函数的空间部分后再乘上时间部分e^(-t*i*2π/h)以后就成了完整的波函数了(时间部分记得不太清楚了,指数上的系数不保证正确).

最后看一下薛定谔方程的解——波函数的性质.1.虽然任意给定的E都可以解出一个函数解,但只有满足一定条件的分立的一些E值才能给出有物理意义的波函数;

2.由于薛定谔方程是一个线性微分方程,所以任意几个解的线性组合还是薛定谔方程的解

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!