当前位置:新励学网 > 秒知问答 > 无穷小乘以有界函数等于什么

无穷小乘以有界函数等于什么

发表时间:2024-07-28 05:10:26 来源:网友投稿

无穷小乘以有界函数是0。

因为无穷小乘以有界函数等于无穷小。 无穷小量:通常以函数、序列等形式出现。 无穷小量即以数0为极限的变量,无限接近于0。

1、当自变量x无限接近0时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。

2、无穷小乘有界函数是0,无穷小乘以有界函数等于无穷小。有界函数:设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。

3、极限的性质:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。有界性:如果一个数列收敛(有极限),那么这个数列一定有界。但是如果一个数列有界,这个数列未必收敛。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!