当前位置:新励学网 > 秒知问答 > 闭区域有界与无界区别

闭区域有界与无界区别

发表时间:2024-07-28 05:13:18 来源:网友投稿

有界:sinx和cosx在R上是有界的。

一般来说连续函数在闭区间具有有界性。 例如: y=x+6在[1,2]上有最小值7,最大值8,所以说它的函数值在7和8之间变化,是有界的,所以具有有界性。

无界:y=tanx在开区间(-π/2,π/2)上是无界。y=x,在R内无界。

无界函数即不是有界函数的函数。也就是说函数y=f(x)在定义域上只有上界(或只有下界);或者既没有上界又没有下界,称f(x)在定义域上无界,在定义域无界的函数称为无界函数 。

这是我的个人观点,不知道对不对?

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!