当前位置:新励学网 > 秒知问答 > 垂直于椭圆焦点的弦长公式

垂直于椭圆焦点的弦长公式

发表时间:2024-07-28 05:19:01 来源:网友投稿

椭圆的焦点弦长公式是:L=2a±2ex。焦点弦A(x1,y1),B(x2,y2),AB为椭圆的焦点弦,M(x,y)为AB中点,则L=2a±2ex。椭圆弦长公式是一个数学公式,关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。

设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,但是对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。

椭圆焦点应用:

椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其内表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明)。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!