余子式和代数余子式有什么区别
余子式和代数余子式的区别:指代不同、特点不同。
余子式和代数余子式区别解析
指代不同
余子式:行列式的阶越低越容易计算,于是很自然地提出,能否把高阶行列式转换为低阶行列式来计算。
代数余子式:在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式。
特点不同
余子式:关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式。
代数余子式:元素的代数余子式与该元素本身没什么关系,只与该元素的位置有关。
余子式的定义
余子式是指一个矩阵A,将A的某些行与列去掉之后所余下的方阵的行列式。相应的方阵有时被称为余子阵。又称余因式。行列式的阶越低越容易计算,于是很自然地提出,能否把高阶行列式转换为低阶行列式来计算,为此,引入了余子式和代数余子式的概念。在n阶行列式中,把所在的第i行与第j列划去后,所留下来的n-1阶行列式叫元的余子式。
余子式矩阵
设A为一个m×n的矩阵,k为一个介于1和m之间的整数,并且m≤n。A的一个k阶子式是在A中选取k行k列之后所产生的k个交点组成的方块矩阵的行列式。
A的一个k阶余子式是A去掉了mk行与nk列之后得到的k×k矩阵的行列式。
由于一共有k种方法来选择该保留的行,有k种方法来选择该保留的列,所以A的k阶余子式一共有 Ckm×Ckn个。
如果m=n,那么A关于一个k阶子式的余子式,是A去掉了这个k阶子式所在的行与列之后得到的(n-k)×(n-k)矩阵的行列式,简称为A的k阶余子式。
n×n的方块矩阵A关于第i行第j列的余子式Mij是指A中去掉第i行第j列后得到的n1阶子矩阵的行列式。有时可以简称为A的(i,j)余子式。
代数余子式的定义
在n阶行列式中,把元素ai所在的第o行和第e列划去后,留下来的n-1阶行列式叫做元素ai的余子式,记作M,将余子式M再乘以-1的o+e次幂记为A,A叫做元素
一个元素ai的代数余子式与该元素本身没什么关系,只与该元素的位置有关。
代数余子式求和
带有代数符号的余子式称为代数余子式,计算元素的代数余子式时,首先要注意不要漏掉代数余子式所带的代数符号。
计算某一行(或列)的元素代数余子式的线性组合的值时,尽管直接求出每个代数余子式的值,再求和也是可行的,但一般不用此法,其原因是计算量太大,注意到行列式D中元素aij 的代数余子式aij与a的值无关,仅与其所在位置有关,利用这一点,可将D的某一行(或列)元素的代数余子式的线性组合表示为一个行列式,而构造这一行列式是不难的,只需将其线性组合的系数替代D的该行(或该列)元素,所得的行列式D就是所要构造的行列式,再应用下述行列式的展开定理,即命题1和命题2,就可求得D的值
免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。
如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!
新励学网教育平台
海量全面 · 详细解读 · 快捷可靠
累积科普文章数:18,862,126篇