当前位置:新励学网 > 秒知问答 > 什么是三角函数商公式

什么是三角函数商公式

发表时间:2024-07-28 05:34:56 来源:网友投稿

一、同角三角函数基本关系

1、倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

2、商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

3、平方关系:

二、两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

三、倍角公式

tan2A = 2tanA/(1-tan² A)

Sin2A=2SinA·CosA

Cos2A = Cos²A-Sin² A

=2Cos² A-1

=1-2sin²A

四、三倍角公式

sin3A = 3sinA-4(sinA)³;

cos3A = 4(cosA)³ -3cosA

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

五、半角公式

sin(A/2) = √{(1--cosA)/2}

cos(A/2) = √{(1+cosA)/2}

tan(A/2) = √{(1--cosA)/(1+cosA)}

cot(A/2) = √{(1+cosA)/(1-cosA)} ?

tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

六、和差化积

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

七、积化和差

sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

八、诱导公式

sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tgA=tanA = sinA/cosA

九、万能公式

sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}

cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}

tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}

十、其它公式

a·sin(a)+b·cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a]

a·sin(a)-b·cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b]

1+sin(a) = [sin(a/2)+cos(a/2)]²;

1-sin(a) = [sin(a/2)-cos(a/2)]²;

十一、其他非重点三角函数

csc(a) = 1/sin(a)

sec(a) = 1/cos(a)

十二、双曲函数

sinh(a) = [e^a-e^(-a)]/2

cosh(a) = [e^a+e^(-a)]/2

tg h(a) = sin h(a)/cos h(a)

十三、基本关系

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!