当前位置:新励学网 > 秒知问答 > 全概率公式的推导

全概率公式的推导

发表时间:2024-07-28 05:38:32 来源:网友投稿

全概率公式推导如下:

设 A1,A2,A3,A4,...,An 是样本空间的一个完备事件组。且事件 A1,…,An 两两互不相容。可用公式表示如下:A_{i}cap A_{i} = phi(i

e j)。

每一次试验中,完备事件组中有且仅有一个发生。完备事件组构成样本空间的一个划分。

假设事件 A 完备事件组为 B_{1},B_{2},B_{3},…B_{n} ,则:P(A)=P(AB1)+P(AB2)+P(AB3)+…P(ABn)。根据:条件概率公式。

P(A) 可重新表示如下P(A)=P(A/B_{1})P(B_{1})+P(A/B_{2})P(B_{2})+P(A/B_{3})P(B_{3})+…+P(A/B_{n})P(B_{n}) =sum_{i=1}^{n}{P(B_{i})P(A/B_{i})}。

全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!