当前位置:新励学网 > 秒知问答 > 微积分求导的原理

微积分求导的原理

发表时间:2024-07-28 06:43:27 来源:网友投稿

微积分基本原理就是牛顿-莱布尼茨公式,即一个连续函数在区间[a, b]上的定积分,等于它的任意一个原函数在区间[a, b]上的增量。

1、微积分一开始定义的时候就用到了函数和极限,微积分分为微分和积分,微分就是求一个函数的导数,所谓函数的导数,其几何意义是这个函数的图像某一点的切线的斜率。微积分的基本思想就是极限,进一步与无穷有关,如果把圆切割成无穷数量的若干份,每一份都有一定面积,再把这无穷份累加,就得到整个圆的面积,这是微积分推导曲线图形的量的基本思想。不但是圆以后的球表面积公式、球体积公式、圆柱体积公式等等都可以用微积分推导出来。

2、微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。所以在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!