当前位置:新励学网 > 秒知问答 > 非齐次线性微分方程的特解相减

非齐次线性微分方程的特解相减

发表时间:2024-07-28 06:56:30 来源:网友投稿

非齐次线性微分方程

即y'+f(x)y=g(x)

两个特解y1,y2

即y1'+f(x)y1=g(x),y2'+f(x)y2=g(x)

二者相减得到

(y1-y2)'+f(x)*(y1-y2)=0

所以y1-y2当然是齐次方程

y'+f(x)*y=0的解

扩展资料:

非齐次线性方程组Ax=b的特解就是满足方程组Ax=b的一个解向量。 非齐次线性方程组解的判别如果系数矩阵的秩小于增广矩阵的秩,方程组无解。

如果系数矩阵的秩等于增广矩阵的秩,方程组有解。在有解的情况下,如果系数矩阵的秩等于未知数的个数,非齐次线性方程组有唯一解。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!