当前位置:新励学网 > 秒知问答 > 反正切函数的和差公式

反正切函数的和差公式

发表时间:2024-07-28 07:21:07 来源:网友投稿

设arctanA=x,arctanB=y

因为tanx=A,tany=B

利用两角和的正切公式,可得:

tan(x+y)=(tanx+tany)/(1-tanxtany)=(A+B)/(1-AB)

所以 x+y=arctan[(A+B)/(1-AB)]

即arctanA+arctanB=arctan[(A+B)/(1-AB)]

拓展资料:

反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。三角函数的反函数不是单值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。

为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:

1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;2函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);3为了使研究方便,常要求所选择的区间包含0到π/2的角;4所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!