当前位置:新励学网 > 秒知问答 > 椭圆弦长公式推导过程是什么

椭圆弦长公式推导过程是什么

发表时间:2024-07-28 07:29:17 来源:网友投稿

椭圆弦长公式 椭圆弦长公式是一个数学公式,关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式√(1+K²)[(X1+X2)² - 4・X1・X2]求出弦长。设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,但是对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。推导设直线y=kx+b代入椭圆的方程可得:x²/a²+ (kx+b)²/b²=1,设两交点为A、B,点A为(x1,y1),点B为(x2,y2)则有AB=√ [(x1-x2)²+(y1-y2)²]把y1=kx1+b.y2=kx2+b分别代入,则有:AB=√ [(x1-x2)²+(kx1-kx2)²=√ [(x1-x2)²+k²(x1-x2)²]=│x1-x2│ √ (1+k²)同理可以证明:弦长=│y1-y2│√[(1/k²)+1]

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!