当前位置:新励学网 > 秒知问答 > 有界与收敛的关系区别

有界与收敛的关系区别

发表时间:2024-07-28 07:43:00 来源:网友投稿

1、数列收敛与存在极限的关系:

数列收敛则存在极限,这两个说法是等价的。

2、数列收敛与有界性的关系:

数列收敛则数列必然有界,但是反过来不一定成立。

如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。

相关内容解释

一、有界函数的性质:

1、单调性。

闭区间上的单调函数必有界。其逆命题不成立。

2、连续性。

闭区间上的连续函数必有界。其逆命题不成立。

3、可积性。

闭区间上的可积函数必有界。其逆命题不成立。

4、有界性。

5、周期性。

二、设函数f(x)是某一个实数集A上有定义,如果存在正数M 对于一切X∈A都有不等式|f(x)|≤M的则称函数f(x)在A上有界,如果不存在这样定义的正数M则称函数f(x)在A上无界。

设f为定义在D上的函数,若存在数M(L),使得对每一个x∈D有: ƒ(x)≤M(ƒ(x)≥L)则称ƒ在D上有上(下)界的函数,M(L)称为ƒ在D上的一个上(下)界。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!