当前位置:新励学网 > 秒知问答 > n阶可逆对称矩阵的性质

n阶可逆对称矩阵的性质

发表时间:2024-07-28 07:47:17 来源:网友投稿

n阶实对称阵的定义是aa^t=e,那么两边取行列式,由于a转置的行列式等于a的行列式,有|a|^2=1,可知|a|不等于0,a不就可逆了,对称矩阵的性质:

1、,对称矩阵是元素以对角线为对称轴对应相等的矩阵。

2.形矩阵是A为对称矩阵的必要条件。

3.对角矩阵都是对称矩阵。

两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。

用<,>表示Rn上的内积。的实矩阵A是对称的,当且仅当对于所有,。

任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和:X=1/2(X+XT)+1/2(X-XT)

每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。

若对称矩阵A的每个元素均为实数,A是Hermite矩阵。

一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零。

如果X是对称矩阵,那么AXAT也是对称矩阵.

n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。

所谓对称变换,即对任意α、 β∈V,都有(σ(α),β)=(α,σ(β))。投影变换和镜像变换都是对称变换。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!