当前位置:新励学网 > 秒知问答 > 爱因斯坦场方程的概述

爱因斯坦场方程的概述

发表时间:2024-07-28 07:47:28 来源:网友投稿

1.爱因斯坦场方程: R_uv-1/2*R*g_uv=κ*T_uv (Rμν-(1/2)gμνR=8GπTμν/(c*c*c*c) -gμν)

说明:这是一个二阶张量方程,R_uv为里契张量表示了空间的弯曲状况。T_uv为能量-动量张量,表示了物质分布和运动状况。g_uv为度规,κ为系数,可由低速的牛顿理论来确定。"_"后字母为下标,"^"后字母为上标。 意义:空间物质的能量-动量(T_uv)分布=空间的弯曲状况(R_uv)解的形式是:ds^2=Adt^2+Bdr^2+Cdθ^2+Ddφ^2 式中A,B,C,D为度规g_uv分量。 考虑能量-动量张量T_uv的解比较复杂。最简单的就是让T_uv等于0,对于真空静止球对称外部的情况,则有施瓦西外解。如果是该球体内部的情况,或者是考虑球体轴对称的旋转,就稍微复杂一点。还有更复杂的星云内部或外部的情况,星云内部的星球还要运动、转动等。这些因素都要影响到星云内部的曲面空间。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!