当前位置:新励学网 > 秒知问答 > 不能相似对角化的矩阵快速判断

不能相似对角化的矩阵快速判断

发表时间:2024-07-28 11:47:14 来源:网友投稿

n级矩阵A可对角化<=>A的属于不同特征值的特征子空间维数之和为n。

实际判断方法:

1、先求特征值,如果没有相重的特征值,一定可对角化;2如果有相重的特征值λk,其重数为k,那么你通过解方程(λkE-A)X=0得到的基础解系中的解向量若也为k个,则A可对角化,若小于k,则A不可对角化。

另外实对称矩阵一定可对角化。

扩展资料:

若n阶矩阵A有n个不同的特征值,则A必能相似于对角矩阵。

说明:当A的特征方程有重根时,就不一定有n个线性无关的特征向量,从而未必能对角化。

设M为元素取自交换体K中的n阶方阵,将M对角化,就是确定一个对角矩阵D及一个可逆方阵P,使M=PDP-1。设f为典范对应于M的Kn的自同态,将M对角化,就是确定Kn的一个基,使在该基中对应f的矩阵

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!