当前位置:新励学网 > 秒知问答 > 带根号极限的求法

带根号极限的求法

发表时间:2024-07-29 00:30:59 来源:网友投稿

1:极限部分分子有理化为:

极限部分=〔(1+x^2)-1〕/〔x^2*(√(1+x^2)+1〕=1/〔√(1+x^2)+1〕

再取极限=1/2。

2:同理,分子有理化为:

极限部分=〔(2-x)-x〕/〔(1-x)*√(2-x)+√x〕

=2/〔√(2-x)+√x〕

再取极限=2/(1+1)=1。

3:取t=1/x,则x=1/t,t趋近于0,代入得到:

极限部分化简=〔√(t^2+t+1)+2t〕/(2+t)

再取极限=1/2。

整数的除法法则

1)从被除数的高位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;

2)除到被除数的哪一位,就在那一位上面写上商;

3)每次除后余下的数必须比除数小。

除数是整数的小数除法法则:

1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;

2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!