当前位置:新励学网 > 秒知问答 > 积分弧段的对称性和奇偶性

积分弧段的对称性和奇偶性

发表时间:2024-07-29 06:47:53 来源:网友投稿

曲线的对称性,奇偶性是指根据对函数性质的分析,找出图像上控制形状的关键点,比较简便、迅速、准确地用描绘,熟练掌握函数奇偶性(曲线对称性)的判别:如果函数的定义域D是关于原点对称的,对任意的x∈D,若都有f(x)=-f(x),则为奇函数,图像关于坐标原点对称。

2、曲面积分的对称性,奇偶性:

区域Q的对称性:

(1)若(x,y,z)∈S则(x,y,一z)∈Q那么0关于xoy面对称。8关于xox面yo面对称类似。

(2) 若(x.y,z)∈Q则(一x,一 y.z)∈Q那么2关于z轴对称。Q关于x轴)轴对称类似。

(3)若(xy.2)∈则(x一)2)(y1一二)和(-.y2)均∈2那么O关于三个坐标面对称。

(4)若(x.y.2)∈Q则(一x-γ→∈Q那么0关于原点对称。

(5)若(x,y,z)∈Q则(,r.2)和(一x、z)∈2那么0关于x和y∞面对称。

1.2函数的奇偶性。

(6)若f(x,y,z)在2上满足f(-x,y.z)-干了(x,y.2),称f为o上关于x的奇、偶函数。f关于y或2的奇偶性类似。

(7)若f(x.y.z)在2上满足f(一x,一y,z)=干f(x.y.c),称厂为关于:与y的奇偶函数。」关于心与:或)与z的奇偶性类似。

(8)若f(x.y,z)在2上满足F(-x;

2-2)元Ff(x.y.2).称厂为关于x和:的奇、偶函数。

免责声明:本站发布的教育资讯(图片、视频和文字)以本站原创、转载和分享为主,文章观点不代表本网站立场。

如果本文侵犯了您的权益,请联系底部站长邮箱进行举报反馈,一经查实,我们将在第一时间处理,感谢您对本站的关注!